Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Mem. Inst. Oswaldo Cruz ; 113(12): e180279, 2018. tab
Article in English | LILACS | ID: biblio-976232

ABSTRACT

BACKGROUND The main strategy to control human malaria still relies on specific drug treatment, limited now by Plasmodium falciparum-resistant parasites, including that against artemisinin derivatives. Despite the large number of active compounds described in the literature, few of them reached full development against human malaria. Drug repositioning is a fast and less expensive strategy for antimalarial drug discovery, because these compounds are already approved for human use. OBJECTIVES To identify new antimalarial drugs from compounds commercially available and used for other indications. METHODS Accuvit®, Ginkgo® and Soyfit®, rich in flavonoids, and also the standard flavonoids, hesperidin, quercetin, and genistein were tested against blood cultures of chloroquine-resistant P. falciparum, as well as chloroquine, a reference antimalarial. Inhibition of parasite growth was measured in immunoenzymatic assay with monoclonal anti-P. falciparum antibodies, specific to the histidine-rich protein II. Tests in mice with P. berghei malaria were based on percent of parasitaemia reduction. These compounds were also evaluated for in vitro cytotoxicity. FINDINGS The inhibition of parasite growth in vitro showed that Accuvit® was the most active drug (IC50 5 ± 3.9 μg/mL). Soyfit® was partially active (IC50 13.6 ± 7.7 μg/mL), and Ginkgo® (IC50 38.4 ± 14 μg/mL) was inactive. All such compounds were active in vivo at a dose of 50 mg/kg body weight. Accuvit® and quercetin induced the highest reduction of P. berghei parasitaemia (63% and 53%, respectively) on day 5 after parasite inoculation. As expected, the compounds tested were not toxic. MAIN CONCLUSIONS The antimalarial activity of Accuvit® was not related to flavonoids only, and it possibly results from synergisms with other compounds present in this drug product, such as multivitamins. Multivitamins in Accuvit® may explain its effect against the malaria parasites. This work demonstrated for the first time the activity of these drugs, which are already marketed.


Subject(s)
Humans , Flavonoids/pharmacology , Drug Resistance , Therapeutic Equivalency , Chloroquine/therapeutic use , Malaria/complications , Plasmodium falciparum , Proprietary Drug Name
2.
Mem. Inst. Oswaldo Cruz ; 110(8): 981-988, Dec. 2015. tab, graf
Article in English | LILACS | ID: lil-769827

ABSTRACT

This work reports the in vitro activity against Plasmodium falciparumblood forms (W2 clone, chloroquine-resistant) of tamoxifen-based compounds and their ferrocenyl (ferrocifens) and ruthenocenyl (ruthenocifens) derivatives, as well as their cytotoxicity against HepG2 human hepatoma cells. Surprisingly with these series, results indicate that the biological activity of ruthenocifens is better than that of ferrocifens and other tamoxifen-like compounds. The synthesis of a new metal-based compound is also described. It was shown, for the first time, that ruthenocifens are good antiplasmodial prototypes. Further studies will be conducted aiming at a better understanding of their mechanism of action and at obtaining new compounds with better therapeutic profile.


Subject(s)
Animals , Humans , Antimalarials/pharmacology , Coordination Complexes/chemical synthesis , Ferrous Compounds/pharmacology , Organometallic Compounds/pharmacology , Plasmodium falciparum/drug effects , Ruthenium/pharmacology , Antimalarials/chemical synthesis , Cell Line , Chromatography, Thin Layer , Coordination Complexes/pharmacology , Cytotoxins/pharmacology , Ferrous Compounds/chemical synthesis , Haplorhini , /parasitology , In Vitro Techniques , Organometallic Compounds/chemical synthesis , Ruthenium/chemistry , Tamoxifen/chemistry
3.
Mem. Inst. Oswaldo Cruz ; 110(7): 906-913, Nov. 2015. tab, graf
Article in English | LILACS | ID: lil-764592

ABSTRACT

Several species of Aspidospermaplants are used to treat diseases in the tropics, including Aspidosperma ramiflorum, which acts against leishmaniasis, an activity that is experimentally confirmed. The species, known as guatambu-yellow, yellowperoba, coffee-peroba andmatiambu, grows in the Atlantic Forest of Brazil in the South to the Southeast regions. Through a guided biofractionation of A. ramiflorumextracts, the plant activity against Plasmodium falciparumwas evaluated in vitro for toxicity towards human hepatoma G2 cells, normal monkey kidney cells and nonimmortalised human monocytes isolated from peripheral blood. Six of the seven extracts tested were active at low doses (half-maximal drug inhibitory concentration < 3.8 µg/mL); the aqueous extract was inactive. Overall, the plant extracts and the purified compounds displayed low toxicity in vitro. A nonsoluble extract fraction and one purified alkaloid isositsirikine (compound 5) displayed high selectivity indexes (SI) (= 56 and 113, respectively), whereas compounds 2 and 3 were toxic (SI < 10). The structure, activity and low toxicity of isositsirikine in vitro are described here for the first time in A. ramiflorum, but only the neutral and precipitate plant fractions were tested for activity, which caused up to 53% parasitaemia inhibition of Plasmodium bergheiin mice with blood-induced malaria. This plant species is likely to be useful in the further development of an antimalarial drug, but its pharmacological evaluation is still required.


Subject(s)
Animals , Humans , Mice , Antimalarials/pharmacology , Aspidosperma/chemistry , Plant Extracts/pharmacology , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Antimalarials/isolation & purification , Antimalarials/toxicity , Cell Line , Dose-Response Relationship, Drug , Parasitic Sensitivity Tests
4.
Mem. Inst. Oswaldo Cruz ; 109(5): 546-552, 19/08/2014. tab, graf
Article in English | LILACS | ID: lil-720416

ABSTRACT

Due to the recent advances of atovaquone, a naphthoquinone, through clinical trials as treatment for malarial infection, 19 quinone derivatives with previously reported structures were also evaluated for blood schizonticide activity against the malaria parasite Plasmodium falciparum. These compounds include 2-hydroxy-3-methylamino naphthoquinones (2-9), lapachol (10), nor-lapachol (11), iso-lapachol (12), phthiocol (13) and phenazines (12-20). Their cytotoxicities were also evaluated against human hepatoma and normal monkey kidney cell lines. Compounds 2 and 5 showed the highest activity against P. falciparum chloroquine-resistant blood-stage parasites (clone W2), indicated by their low inhibitory concentration for 50% (IC50) of parasite growth. The therapeutic potential of the active compounds was evaluated according to the selectivity index, which is a ratio of the cytotoxicity minimum lethal dose which eliminates 50% of cells and the in vitro IC50. Naphthoquinones 2 and 5, with activities similar to the reference antimalarial chloroquine, were also active against malaria in mice and suppressed parasitaemia by more than 60% in contrast to compound 11 which was inactive. Based on their in vitro and in vivo activities, compounds 2 and 5 are considered promising molecules for antimalarial treatment and warrant further study.


Subject(s)
Animals , Humans , Mice , Antimalarials/pharmacology , Malaria/drug therapy , Naphthoquinones/pharmacology , Phenazines/pharmacology , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Antimalarials/chemistry , Cell Line , Disease Models, Animal , Malaria/parasitology , Naphthoquinones/chemistry , Parasitic Sensitivity Tests , Parasitemia/drug therapy , Phenazines/chemistry
5.
Mem. Inst. Oswaldo Cruz ; 108(8): 974-982, 6/dez. 2013. tab, graf
Article in English | LILACS | ID: lil-697147

ABSTRACT

Infusions of Aspidosperma nitidum (Apocynaceae) wood bark are used to treat fever and malaria in the Amazon Region. Several species of this family are known to possess indole alkaloids and other classes of secondary metabolites, whereas terpenoids, an inositol and the indole alkaloids harmane-3 acid and braznitidumine have been described in A. nitidum . In the present study, extracts from the wood bark, leaves and branches of this species were prepared for assays against malaria parasites and cytotoxicity testing using human hepatoma and normal monkey kidney cells. The wood bark extracts were active against Plasmodium falciparum and showed a low cytotoxicity in vitro, whereas the leaf and branch extracts and the pure alkaloid braznitidumine were inactive. A crude methanol extract was subjected to acid-base fractionation aimed at obtaining alkaloid-rich fractions, which were active at low concentrations against P. falciparum and in mice infected with and sensitive Plasmodium berghei parasites. Our data validate the antimalarial usefulness of A. nitidum wood bark, a remedy that can most likely help to control malaria. However, the molecules responsible for this antimalarial activity have not yet been identified. Considering their high selectivity index, the alkaloid-rich fractions from the plant bark might be useful in the development of new antimalarials.


Subject(s)
Animals , Humans , Mice , Antimalarials/pharmacology , Aspidosperma/chemistry , Plant Bark/chemistry , Plant Extracts/pharmacology , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Antimalarials/isolation & purification , Malaria/drug therapy , Malaria/parasitology , Parasitic Sensitivity Tests , Plant Extracts/isolation & purification
6.
Mem. Inst. Oswaldo Cruz ; 104(supl.1): 142-151, July 2009. ilus, graf, tab
Article in English | LILACS | ID: lil-520874

ABSTRACT

In previous work, we proposed alternative protocols for following patients with treated Chagas disease and these are reviewed herein. Evidence was provided to support the following: (i) functional anti-trypomastigote antibodies are indicative of ongoing chronic Trypanosoma cruzi infections; (ii) specific antibodies detected by conventional serology (CS) with epimastigote extracts, fixed trypomastigotes or other parasite antigens may circulate years after parasite elimination; (iii) functional antibodies are evidenced by complement-mediated lysis of freshly isolated trypomastigotes, a test which is 100 percent specific, highly sensitive, and the first to revert after T. cruzi elimination and (iv) the parasite target for the lytic antibodies is a glycoprotein of high molecular weight (gp160) anchored at the parasite surface. The complement regulatory protein has been cloned, sequenced and produced as a recombinant protein by other groups and is useful for identifying functional anti-T. cruzi antibodies in ELISA tests, thus dispensing with the need for live trypomastigotes to manage treated patients. If used instead of CS to define cures for Chagas patients, ELISA will avoid unnecessary delays in finding anti-T. cruzi drugs. Other highly sensitive techniques for parasite DNA detection, such as PCR, need to be standardized and included in future protocols for the management of patients with drug-treated Chagas disease.


Subject(s)
Humans , Antibodies, Protozoan/immunology , Chagas Disease/immunology , Complement Activation/immunology , Trypanosoma cruzi/immunology , Acute Disease , Antibodies, Protozoan/blood , Chronic Disease , Chagas Disease/diagnosis , Chagas Disease/drug therapy , Enzyme-Linked Immunosorbent Assay , Trypanocidal Agents/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL